Blueshift
  • Product  
    • PLATFORM
      • SmartHub CDP
      • Omnichannel Orchestration
      • Predictive Intelligence
      • Single Customer View
      • Audience Segmentation
      • 1:1 Personalization
    • SOLUTIONS
      • Email Automation
      • Mobile Marketing
      • Website Personalization
      • Audience Targeting
      • Contextual Chat
    • PLANS AND INTEGRATIONS
      • Integration Partners
      • Support Plans
      • Pricing
  • Customers
  • Resources  
    • Library
    • Blog
    • Videos
    • Documentation
    • Product Updates
    • Blueshift Academy
  • Company  
    • About Blueshift
    • Events
    • News & Awards
    • Careers
  • Contact Us
  • LOGIN
  • Search
  • Menu Menu
  • Product
    • PLATFORM
      • SmartHub CDP
      • Omnichannel Orchestration
      • Predictive Intelligence
      • Single Customer View
      • Audience Segmentation
      • 1:1 Personalization
    • SOLUTIONS
      • Email Automation
      • Mobile Marketing
      • Website Personalization
      • Contextual Chat
      • Retired – Audience Targeting
    • PLANS AND INTEGRATIONS
      • Integration Partners
      • Support Plans
      • Pricing
  • Customers
  • Resources
    • Library
    • Blog
    • Videos
    • Documentation
    • Product Updates
    • Blueshift Academy
  • Company
    • About Blueshift
    • Events
    • News & Awards
    • Careers
  • LOGIN
  • Contact Us

How Recommendations Help You Stay Relevant in the Era of Content Overload

AI in Marketing
How recommendations help you stay relevant in content overload

One thing we can guarantee about the future: we’re never going to run out of content.

Take TV for example. Where once we had a handful of channels broadcasting one program at a time, we now have multiple streaming platforms, countless cable channels, on demand, and DVRs.

Or music: You’re not limited by your carefully curated CD collection anymore. You can choose from almost any song ever recorded on Spotify.

For the content consumer, it’s an embarrassment of riches. For businesses that rely on advertising or subscription revenue, it’s a challenge.

Attention spans are shrinking. With endless options, consumers will move on in matters of seconds if what they see or hear doesn’t capture their interest.

To stay relevant in the media industry — bringing targeted audiences, charging top dollar for your ads and maintaining a healthy growing subscriber base — your content needs to be relevant.

And, of course, every consumer’s tastes are different. The key to relevance is personalization recommendations.

For example, after revamping its mobile website to deliver a personalized, Facebook-like experience, USA Today saw a 75-percent increase in time spent per article.

Recommendation Models Used By Successful Advertising and Subscription Businesses

As content executive Paul Lentz points out, publishers have been using data to target specific content at specific audiences since the print era.

In today’s digital era, a few successful media companies have developed recommendation techniques to engage and retain users with almost supernatural precision.

  • After experimenting with content-based and collaborative filtering, the New York Times settled on a best-of-both-worlds approach that models the content and adjusts it according to viewing signals from readers, models reader preferences, and uses the resulting data to make recommendations.
  • Netflix’s recommendation engine divides users up into “a couple thousand” taste groups. Netflix claims the engine is worth $1 billion a year and is responsible for more than 80 percent of the shows users choose.
  • Spotify’s Discover Weekly playlists have become a favorite feature among users for introducing them to new songs and reminding them of old favorites. The “magic” of the algorithm, the man behind the playlist says, comes from comparing your listening habits to those with similar taste and “filling in the blanks.”

What does each of these approaches have in common? Each media company leveraged a massive database of user data to make comparisons among users, identify trends in their preferences, and anticipate their behavior.

You can do the same with Blueshift’s AI-powered marketing platform. Blueshift can help you

  • Deliver predictive content tailored to every user interaction.
  • Use the power of your website’s or app’s community of shoppers to help craft useful recommendations through collaborative filtering.
  • Recommend what’s trending or most viewed narrowed down to even a user’s location

Learn how to configure recommendations in a single click or bring your own algorithms to BlueShift Personalization Studio.

December 5, 2017/by Chelsi Nakano
Tags: media, personalization, recommendations, subscription
Share this entry
  • Share on Facebook
  • Share on Twitter
  • Share on WhatsApp
  • Share on Pinterest
  • Share on LinkedIn
  • Share on Reddit
  • Share by Mail
https://blueshift.com/wp-content/uploads/20171205-How-recommendations-help-you-stay-relevant-in-content-overload.jpg 640 1200 Chelsi Nakano https://blueshift.com/wp-content/uploads/blueshift-primary.svg Chelsi Nakano2017-12-05 08:46:502019-11-22 10:55:08How Recommendations Help You Stay Relevant in the Era of Content Overload

Recent Articles

  • Using recommendations in online marketplace How to Use Recommendations in Online Marketplace MarketingJanuary 21, 2021 - 6:39 am
  • How to Run a Successful Customer Data Platform RFP: The 50 Essential QuestionsJanuary 20, 2021 - 6:36 am
  • Customer Data Platform experts David Raab and Shamir Duverseau join Blueshift in our exclusive webinar. Webinar Recap: What the CDP?! With the CDP Institute and Smart Panda LabsJanuary 15, 2021 - 5:10 am
  • new retail cx and marketing trends 8 Retail CX and Marketing Trends for the New YearJanuary 13, 2021 - 5:19 am
  • ai recommendations saw an 81% increase in marketing revenue Why You Need AI-Powered Recommendations in Your MarketingJanuary 7, 2021 - 6:07 am
  • hackathon 2020 winners Blueshift’s 2020 Hackathon RecapDecember 18, 2020 - 6:45 am

Headquarters

433 California St, Suite 600,
San Francisco, CA 94104

Global Offices

Charlotte, NC
Pune, India
London, UK

hello@blueshift.com

Company

  • About Blueshift
  • Customers
  • News and Awards
  • Events
  • Careers
  • Contact Us

Platform

  • SmartHub CDP
  • Single Customer View
  • Audience Segmentation
  • Predictive Intelligence
  • 1:1 Personalization
  • Omnichannel Orchestration
  • Integration Partners

Solutions

  • Email Automation
  • Mobile Marketing
  • Website Personalization
  • Audience Targeting
  • Contextual Chat

Resources

  • Documentation
  • Developer Portal
  • Product Updates
  • Case Studies
  • Reports
  • RFP Guide
  • Blueshift Academy

© 2020 COPYRIGHT BLUESHIFT LABS, INC. PRIVACY POLICY   |   TERMS OF SERVICE   |   ANTI-SPAM POLICY

Scroll to top