

Blueshift Integration
User Guide 16.1.0

 Blueshift

Blueshift-Demandware_Integration.docx Draft Page2

Purpose of this document

The purpose of this document is to outline a general concept which describes the workflow, configuration
and logging view of the Blueshift schedule jobs and event setup.

Version History

Version Date
Version 16.1.0 01/08/2016

 Blueshift

Blueshift-Demandware_Integration.docx Draft Page3

Table of contents

Table of contents .. 3	
Cartridge Installation ... 4	
Configuration .. 5	

Global Configuration .. 6	
Blueshift Event Key Configuration .. 6	
Blueshift Enable/Disable module : ... 6	
Customers Configuration .. 7	
Catalog Configuration : ... 8	
Order Configuration : .. 8	
Schedule job Configuration : .. 9	

Data model and related infrastructure ... 10	
Export Logs ... 11	
Storefront Integration ... 13	
Events ... 13	

JavaScript Configurations : ... 13	
Pageload event : .. 15	
Identify User Event : ... 16	
View Product Event : .. 17	
Add To Cart Event : .. 18	
Remove From Cart Event : ... 19	
Checkout Event : ... 20	
Purchase Event : .. 21	
Search Event : ... 22	

 Blueshift

Blueshift-Demandware_Integration.docx Draft Page4

Cartridge Installation
To install the Blueshift integration for the first time on your instance, you may follow the following
steps:

1. Download blushiftintigration.zip from Demandware XChange
2. Extract archive to your local file system – e.g. the cartridge folder of your project
3. Import cartridges into your workspace and link them to the Server Connection
4. Import site_template.zip into your instance (Meta Data andCustom Objects and

Schedules)
5. Assign the int_blueshift cartridge to the organization and all sites.
6. Assign the bm_blueshiftand int_blueshift cartridges to the business manager

organization – e.g. bm_blueshift:bm_custom_plugin
7. Assign Business Manager Modules ‘Blueshift‘ and its sub modules like ‘Global

Configurations’, ‘Customers’, ‘Catalog’, ‘Orders’ to respective roles
8. You can now make use of the cartridge

Note : bc_library needs to be included while setting up the blueshift cartridge.

 Blueshift

Blueshift-Demandware_Integration.docx Draft Page5

Configuration
Under Merchant Tools -> Blueshift you can configure global configuration settings , customers,
order and catalog export configuration:

Under the Blushift menu you can see other options like Global Configuration, Customers ,Catalog , Orders.

 Blueshift

Blueshift-Demandware_Integration.docx Draft Page6

Global Configuration
Here is the global configuration which is needed to connect with AWS S3 bucket or Blueshift API.
From here you can configure API configurations.

Blueshift Event Key Configuration

For configuring blueshift event key, go to the Merchant Tools -> custom Preferances select
“BlueshiftEventConfigs” and add the Blueshift Event key over there.

Bellow is the screenshot for reference :

Blueshift Enable/Disable module :

this functionality has feature to enable or disable blueshift event hooks and scadule jobs to
execute.
user can enable or disable blueshift module functionality from here.
if the blueshift is disabled, all the frontend hooks like viewproduct, identify user etc. will be
disabled no data is passed to blueshift and schedule jobs are also disabled means if any job is
run while disable mode, no csv file generated and nothing is uploaded to AWS S3 bucket.

For configuring blueshift enable/disable mode, go to the Merchant Tools -> custom Preferences
select “BlueshiftEventConfigs” and you can see Blueshift Enabled you can change the value to
Yes or No .

 Blueshift

Blueshift-Demandware_Integration.docx Draft Page7

Bellow is the screenshot for reference.

Customers Configuration
You can configure customer export configuration from here. There are option for configurations.

Export File Name : name of the file tobe exported
Export Folder Path : here you can set the path of export folder it will be created under IMPEX
folder.

Custom Export Fields : you can specify the specific comma separated fields. To export for csv.
If you want all the possible fields to be exported, then leave this field as blank.
For e.g. : firstName,lastName,lastLoginTime,phoneBusiness

Archive Folder Path :here you can set the path of archive folder. it will be created under
 IMPEX directory.

 Blueshift

Blueshift-Demandware_Integration.docx Draft Page8

Error Folder Path: here you can set the path of error folder. it will be created under
IMPEX folder. If any error uccares meanwhile the uploading or creation of csv file then that file
will be moved to error folder for future referance.

Customer Creation From Date :this field will allow you to filter the customer records by creation
date. If you enter value to this field then it will bring all the records between specified date and
current date.

Customer Creation To Date :this field will allow you to filter the customer records by creation
date. If you enter value to this field then it will bring all the records between current date and
Creation To Date.

NOTE : if you provide both the dates like CreationFromDate and CreationToDate then it
will fetch all the records between both the given dates.

Archive File : if this function is set to checked then the exported file will be moved to archive
folder after uploading to S3. And if its unchecked then the exported file will be deleted
permanently.

Catalog Configuration :
Here is the configuration for catalog exports. You can find this configuration under Blushift menu.

Catalog ID : here you need to set catalog id, from which you want to export products.
The other fields will work same as explained above.

Order Configuration :
Here is the configuration for Order exports. You can find this configuration under Blushift menu.

 Blueshift

Blueshift-Demandware_Integration.docx Draft Page9

The configuration fields will work same as explained above in customer configuration area.

Schedule job Configuration :
You can schedule the jobs for exporting Customers, catalog and orders from Administrator -> job
schedules.

Steps :

1.) Click on new button in job schedules.
2.) Add the appropriate field values like name , description etc.
3.) Set Execution Scope to “Sites” and assign the Site from Sites tab.
4.) Set Starting node and pipeline for particular job.

Here bellow is the pipeline and start node configuration for all three jobs
Export type Pipeline Start Node
Customer Export Blueshift InitCustomerExport
Catalog Export Blueshift InitCatalogExport
Order Export Blueshift InitOrdersExport

5.) You can manually run the job by clicking on Run button and you can scadule the job for
execution on specific day or time.

 Blueshift

Blueshift-Demandware_Integration.docx Draft Page10

Data model and related infrastructure
BlueshiftAwsS3Credentials

Attribute/Method Description
ID (PK) A unique ID which represents the schedule
secretKey Input text for AWS secret key value
accessKey Input text for AWS access key value
bucketName Input text for AWS S3 bucket name
executionTime The time this workflow shall be executed
blueshiftEventKey Input field for blueshift api event key

BlueshiftCatalogExport

Attribute/Method Description
ID (PK) A unique ID which represents the schedule
catalogID Input field for Catalog ID
exportFileName Sets the export file name for csv file
foldername Sets folder path for exported csv
fieldnames Input for custom specific fields to export
archivefolder Sets archive folder path for uploaded csv files
errorfolder Sets error folder path if csv upload fails in any reason then it will

be shifted to error folder path.
isArchive Boolean check for archive csv files or not.

BlueshiftCsvExportLogs

Attribute/Method Description
id (PK) A unique ID which represents the schedule
exportDate

It will hold the last exported csv ‘s export date

exportType It will hold the export type like catalogExport, orderExport or
CustomerExport

creationDate Auto generated date for new entry created for this custom
object.

exportedRecordsCount Holds the number of exported record count from csv.
exportFileName Saves the filename which is generated in last export

execution.

 Blueshift

Blueshift-Demandware_Integration.docx Draft Page11

BlueshiftCustomerCsvExport
Attribute/Method Description

ID (PK) A unique ID which represents the schedule
exportFileName Sets the export file name for csv file
foldername Sets folder path for exported csv
fieldnames Input for custom specific fields to export
archivefolder Sets archive folder path for uploaded csv files
errorfolder Sets error folder path if csv upload fails in any reason then it

will be shifted to error folder path.
isArchive Boolean check for archive csv files or not.
customerCreationToDate Date time field for customer creation to date
customerCreationFromDate Date time field for customer creation from date

BlueshiftOrderExport

Attribute/Method Description
ID (PK) A unique ID which represents the schedule
exportFileName Sets the export file name for csv file
foldername Sets folder path for exported csv
fieldnames Input for custom specific fields to export
archivefolder Sets archive folder path for uploaded csv files
errorfolder Sets error folder path if csv upload fails in any reason then it

will be shifted to error folder path.
isArchive Boolean check for archive csv files or not.
OrderCreationToDate Date time field for Order creation to date
OrderCreationFromDate Date time field for Order creation from date

Export Logs

You can see the exported file and its number of records logs in custom object editor section.
Go to merchant tools -.> custom object editor select BlueshiftCsvExportLogs.
Here you can see all the exports.
There are three type of exports saved in it . CustomerExports, CatalogExport, OrderExport.

 Blueshift

Blueshift-Demandware_Integration.docx Draft Page12

Blueshift Storefront
Integration
User Guide

1.1

 Blueshift

Blueshift-Demandware_Integration.docx Draft Page13

Storefront Integration

Blueshift provides event stream API to receive real-time data from website like user details,
product, orders etc. for this blueshift is providing JavaScript API to handle all these event calls.

To use the frontend events we need “event-stream API key” you can find this API key at following
location. Login to your blueshift account, go to Account Profile and you can find API Key tab.

Events
Blueshift provides various events like init, viewProduct, addToCart etc. blueshift is also allowing
your custom events also, you can learn it from blueshift’s official document.

Here is the list of events we are using.

1.) pageload
2.) identifyUser
3.) viewProduct
4.) addToCart
5.) removeFromCart
6.) checkoutEvent
7.) purchase
8.) search

you can find all these event hooks in “blueshift.eventhooks.js” file.

JavaScript Configurations :

 Blueshift

Blueshift-Demandware_Integration.docx Draft Page14

Before start implementing events on the site. First of all place the necessary javascript hooks in
“app.js” file. you can find the code for app.js file in ‘int_blueshift/cartridge/static/default/js/app.js’

Example code :

$(document).on("submit",BSObject.BSSearchClickId,function(){
 var query = $("#q").val();
 BSObject.searchEvent(query);
 return true;
});

$(document).on("click",BSObject.BSAddToCartClickId,function(){
 var product_id = $(this).attr("blueshift-productid");
 alert(product_id);
 BSObject.addToCart(product_id,BSGlobalData.customer_no,BSGlobalData.ema
il);
});

$(document).on("click",BSObject.BSRemoveFromCartClickId,function(){
 var product_id = $(this).attr("blueshift-productid");
 BSObject.removeFromCart(product_id);
});

$(document).on("submit",BSObject.BSPlaceOrderClickId,function(){
 submitCheckoutEvent();
});

After adding this code to app.js, Open the “blueshift.eventhooks.js”file. here we need to set
the following variables.

BSSearchClickId : "#searchEvent",
 BSAddToCartClickId : ".add-to-cart",
 BSRemoveFromCartClickId : ".remove-item",
 BSPlaceOrderClickId : ".submit-order",

These are the event identifier like for example BSAddToCartClickId which represents the class
name of add to cart button. So whenever the button holding this class name is clicked, our add
to cart event will be fired.

Screenshot :

 Blueshift

Blueshift-Demandware_Integration.docx Draft Page15

Note : the above code is only for reference example. You can set your own classes or ids
for event identifier. If you are using your own classes or ids then make sure the ids or
classes are also added to the related buttons or links. But the identifiers must be set, blank
values will raise unexpected errors.

NOTE 1: if you want to add your custom events or add more events which blueshift is providing,
then you can just modify this file and add new event functions in it. And that event can be used
in frontend using “BSObject.your event function”.

NOTE 2 : all the hooks which we are used for different events, needs to be placed between
<isdecorate></isdecorate> tags. As our core javascript library is loaded in header so we need to
first load that library and then our hooks will work.

Pageload event :
Fire this event on every page of your site. Code for this event is placed in header.isml so that this
event is available in all page load. The bellow is the code snipet which needs to be placed in
header.isml file.

Code Snipet :

<isinclude template="custom/blueshiftModule" />
<isblueshift_init configs="config"/>

 Blueshift

Blueshift-Demandware_Integration.docx Draft Page16

Screenshot	:		

This will load the blueshift.eventhooks.js file and call the “init()” event.
This event loads the core blueshift.js file and sends the pageload event to blueshift server.

Identify User Event :
Fire this event when you can identify the user that has logged in, or when you need to pass a
user attribute for a known user. You must include a unique identifying parameter like customer_id
or email.

Generally we put this event call in profile page or in checkout summary page because we can
find all user details in these pages.

To call this event you need to add following code in related files. For e.g. summary.isml in
checkout. or you can put it on account view page(accountoverview.isml), which will appear after
registration or login page like shown in screenshot.

Code Snipet :

<isinclude template="custom/blueshiftModule"/>
<isblueshift_identify customer_id = "${pdict.Basket.getCustomerEmail()}"/>

Screenshot :

 Blueshift

Blueshift-Demandware_Integration.docx Draft Page17

Here we are passing unique Id as customer_id. The above code will add one isml file.
This file will call the javascript event hook “BSObject.identifyUser(params)”.
Params are the data we are supplying to the event.

Javascript Call for developer purpose to Identify User :

BSObject.identifyUser({

 customer_id:'${profile.customerNo}',
 email: '${profile.email}',
 joined_at: '${profile.creationDate.toISOString()}',
 firstname: '${profile.firstName}',
 lastname: '${profile.lastName}'
 });

You can view full code in “template/tag_events/identiry.isml” for better reference.

View Product Event :
This event will fire when the user views a product page on your site.
The hook for this event is placed in product.isml file. This file is the details view of the product.
To add this event bellow code snipet needs to be placed in product.isml file.

Code Snipet :

<isinclude template="custom/blueshiftModule"/>
<isblueshift_viewproduct sku = "${pdict.Product}"/>
Screenshot :

 Blueshift

Blueshift-Demandware_Integration.docx Draft Page18

This hook will add one isml file and from that isml it will call the following event.
(bellow reference code is for developer purpose only)

BSObject.viewProduct({sku:'${pdict.Product.getID()}'},'${customer}','${email}
');

You can view full code in “template/tag_events/viewproduct.isml” for better reference.

Here we are passing productID , Customer Details and Email address.If the customer is not logged in
then it will pass only productID.

Add To Cart Event :

you can fire this event when the user adds an item to shopping cart. To add this event we need
to add one click event in add to cart button.
You can find the add to cart button in “productcontent.isml”. but yes there will be more add to cart
buttons in different files in a site, so just find the add to cart buttons and add the following attribute
to button code.

blueshift-productid = "${pdict.Product.getID()"

for Example :
<button id="add-to-cart" blueshift-productid = "${pdict.Product.getID()" type="submit"
title="${buttonTitle}" value="${buttonTitle}" class="button-fancy-large add-to-cart"
>${buttonTitle}</button>

 Blueshift

Blueshift-Demandware_Integration.docx Draft Page19

Screenshot :

after adding one extra attribute, this add to cart button will fire our add-to-cart click event, which
we have configured in app.js file earlier.

following is the click event code for Developer reference only.

var product_id = $(this).attr("blueshift-productid");
BSObject.addToCart(product_id,BSGlobalData.customer_no,BSGlobalData.email);

You can view full code in “app.js” for better reference.

Here we are supplying product ID , customer_ID, and Email. But here also if user is not logged
in then it will only supply product ID to blueshift.

Remove From Cart Event :
Similar to Add To Cart event above, just add the same attribute to the remove cart button or link
And whenever the link or button will be clicked our remove cart event will fire. You can find the
remove item link in “cart.isml” file.

Following is code snipet:

blueshift-productid = "${pdict.Product.getID()"

Screenshot	:		

 Blueshift

Blueshift-Demandware_Integration.docx Draft Page20

	
here we are passing product id which is removed from cart.

Note : you need to configure the remove button's class name or id in blueshift.eventhooks.js file
for "BSRemoveFromCartClickId" this variable.

Checkout Event :
This event will be fired when the user is on checkout page with all the order details before final
purchase.
To add this event, append the bellow given code to checkout summary page, that is
summary.isml file.

Add the following code to this file.
<isblueshift_checkoutevent event_holder = "submit-order"/>

	
	
	
	
	
	
	
	
	
	
Screenshot	:		

 Blueshift

Blueshift-Demandware_Integration.docx Draft Page21

You need to put this line after <isdecorate> tag as the core js file is loaded in header so we need
to wait for first loading header and then we can put our calls. So its compulsory to put our hook
after <isdecorate> tag.
The above code will include one isml file which contains the following function.
(the bellow code is only for developer purpose)
function submitCheckoutEvent(){

var output =
BSObject.checkoutEvent('${pdict.Basket.getCustomerEmail()}','${pdict.Ba
sket.getShippingTotalPrice()}','<isprint value="${tl}"
encoding="off">','${pdict.CurrentCustomer.getProfile().customerNo}');

 return true;
 }

Purchase Event :
you can fire this event when the user completes a purchase. When order is placed and user
returns to the order summary page at that time we can put this event.

You can put this event on “confirmation.isml” file between <isdecorate> tags.

Add following code between <isdecorate> tag in confirmation.isml

Code Snipet :

<isinclude template="custom/blueshiftModule"/>
<isblueshift_checkoutsuccess event_holder="${pdict.Order}"/>

 Blueshift

Blueshift-Demandware_Integration.docx Draft Page22

Screenshot	:		

This code will include “template/default/tag_events/checkoutsuccess.isml” file. Here it filters the
Order object and gether the required data and pass it to the blueshift purchase event.

BSObject.purchaseSuccess('<isprint value="${details}"
encoding="off">','<isprint value="${products_str}" encoding="off">');

The above is the call to blueshift purchase event. For more details about data you can view the
isml file.

Search Event :
Search event is fired when user searches something and search form is submitted at that time
this event is executed.
this event supplies the search string to blueshift api.

you can put this event on search page isml like simplesearch.isml. and copy the class name or
id name of search form and configure that in blueshift.eventhooks.js file for "
BSSearchClickId" this variable.

add bellow code to the simplesearch.isml

<isinclude template="custom/blueshiftModule"/>

Screenshot	:		

 Blueshift

Blueshift-Demandware_Integration.docx Draft Page23

NOTE : There is a sample implementation isml files in int_blueshift cartridge templates in
default/checkout , default/product, default/components, default/search. Thisis for
reference only. It is recommended to remove the sample data folders from the cartridge
once it’s successfully integrated.

