Use AI techniques to personalize and optimize your communications to reduce subscriber churn.

Stop Subscriber Churn in Its Tracks with These 4 AI-Powered Campaigns

Churn is a natural part of every business. However, no organization likes their users to churn. So, what should you do (especially after you’ve been trying tactic after tactic to no avail)? Use AI techniques to personalize and optimize your communications.

According to a recent “State of Marketing” report, there’s a 50% chance that customers will switch brands if brands don’t anticipate their needs. The goal of marketers is to build strategies and campaigns that will (1) keep active customers engaged, (2) re-engage “at-risk” customers, and (3) bring churned customers back into the fold.

So, what can growth marketers at subscription companies do to reduce churn?

1. Intervene before it’s too late!

“Newsletters are stupid,” said by Alex Shultz, Facebook’s VP of Growth. He believed that most companies today are sending marketing emails that are just spam. Why? Because that same newsletter will be sent to everyone in their email list — to someone who has been enjoying your product for three years and to someone who has just signed up to your site yesterday. No distinction at all, no personalization, no understanding of who that individual person is. Schultz said that companies should be focusing on notifications and triggers-based emails, SMS, and push notifications in reaching out to their customers.

Growth marketers will keep their customers engaged when they provide delightful, relevant content while personalizing it based on their customer’s expressed and perceived preferences. One way to do that is by relying on 1:1 marketing, with no two users receiving the same message at the same time.

IN SHORT: Keep customers interested in your products or services by sending personalized offers or incentives using targeted email or push notifications. (Hint: NEVER rely on a single channel to drive repeat engagement.)

2. Strike while the iron is hot. Quick, send them that enticing incentive!

According to a Pegasystems survey on customer engagement, 56% of top-performing companies are investing in AI to personalize and continuously learn from customer interactions. Today’s AI-powered productivity tools make it possible to anticipate customer needs which allow marketers to tailor highly-personalized campaigns to keep customers engaged.

One example is by using trigger-based email marketing, an example of a customer-centric, behaviour-based marketing approach. Recent Forrester Research showed that trigger-based email marketing campaigns can generate 4x more revenue and 18x greater profits. Subscription upsells are one way of retaining active customers by sending them personalized messages containing information on products they might be interested in. Offering incentives to customers to switch to the next subscription tier can also help in convincing them to upgrade their subscription.

IN SHORT: AI can easily help growth marketers gauge their customers’ willingness to accept an upsell.

3. Out of sight, out of mind? Go remind them.

Abandoned carts may mean that the customer has forgotten he added an item to his cart or he really didn’t want the item.

Growth marketers can still turn abandoned carts into revenue. Remember, these customers have already expressed an interest in the products and are engaged with the brand, all they need is a little nudge to complete their purchase.

With the help of AI, growth marketers can send targeted recommendations that are similar to the one that the customer already added to his cart. These recommendations may include product information on new arrivals, price drops on items with which the customer has engaged, or “back-in-stock” notifications. Even if the customer didn’t really want the abandoned item in his cart, his interest may be piqued by the new recommendations. These triggers are especially good for mobile push notifications since they are “newsworthy”.

4. Win them back.

Win-back campaigns involve the re-activation of churned or “about-to-churn” customers. Winning back churned customers so they can be active again is never an easy task. Move back from using traditional marketing campaigns which lack sufficient real-time data and insight.

AI helps in analyzing vast volumes of customer data especially in identifying the characteristics of high-value past customers. But for AI tools to work effectively in your win-back campaign, you need to feed it with the right data and algorithms.


Growth Marketers Guide CoverA well-designed AI system can streamline an organization’s complex processes. Leveraging marketing AI can provide a significant, tangible lift to an organization’s customer engagement efforts. You can learn more about how Growth Marketing drives increased user engagement by downloading our whitepaper.

 


 

How recommendations help you stay relevant in content overload

How Recommendations Help You Stay Relevant in the Era of Content Overload

One thing we can guarantee about the future: we’re never going to run out of content.

Take TV for example. Where once we had a handful of channels broadcasting one program at a time, we now have multiple streaming platforms, countless cable channels, on demand, and DVRs.

Or music: You’re not limited by your carefully curated CD collection anymore. You can choose from almost any song ever recorded on Spotify.

For the content consumer, it’s an embarrassment of riches. For businesses that rely on advertising or subscription revenue, it’s a challenge.

Attention spans are shrinking. With endless options, consumers will move on in matters of seconds if what they see or hear doesn’t capture their interest.

To stay relevant in the media industry — bringing targeted audiences, charging top dollar for your ads and maintaining a healthy growing subscriber base — your content needs to be relevant.

And, of course, every consumer’s tastes are different. The key to relevance is personalization recommendations.

For example, after revamping its mobile website to deliver a personalized, Facebook-like experience, USA Today saw a 75-percent increase in time spent per article.

Recommendation Models Used By Successful Advertising and Subscription Businesses

As content executive Paul Lentz points out, publishers have been using data to target specific content at specific audiences since the print era.

In today’s digital era, a few successful media companies have developed recommendation techniques to engage and retain users with almost supernatural precision.

  • After experimenting with content-based and collaborative filtering, the New York Times settled on a best-of-both-worlds approach that models the content and adjusts it according to viewing signals from readers, models reader preferences, and uses the resulting data to make recommendations.
  • Netflix’s recommendation engine divides users up into “a couple thousand” taste groups. Netflix claims the engine is worth $1 billion a year and is responsible for more than 80 percent of the shows users choose.
  • Spotify’s Discover Weekly playlists have become a favorite feature among users for introducing them to new songs and reminding them of old favorites. The “magic” of the algorithm, the man behind the playlist says, comes from comparing your listening habits to those with similar taste and “filling in the blanks.”

What does each of these approaches have in common? Each media company leveraged a massive database of user data to make comparisons among users, identify trends in their preferences, and anticipate their behavior.

You can do the same with Blueshift’s AI-powered marketing platform. Blueshift can help you

Learn how to configure recommendations in a single click or bring your own algorithms to BlueShift Personalization Studio.